

OVERFLOW Analysis of the NASA Trap Wing Model from the First High Lift Prediction Workshop

Anthony J. Sclafani, Jeffrey P. Slotnick, John C. Vassberg
The Boeing Company, Boeing Research & Technology
Huntington Beach, California, USA

Thomas H. Pulliam, Henry C. Lee NASA Ames Research Center Moffett Field, California, USA

49th AIAA Aerospace Sciences Meeting Orlando, Florida 4-7 January 2011

Trap Wing OVERFLOW Analysis *Outline*

- Geometry
- Overset Grids
- Solver, Solution, and Dataset Information
- Convergence
- Results
 - Test Case 1: Grid Convergence Study
 - Test Case 2: Flap Deflection Prediction Study
 - Test Case 3: Slat and Flap Support Effects Study
 - Additional Study: Off-Body Grid Refinement
- Conclusions

NASA Trap Wing "Config 1"

Geometry Trap Wing Wind Tunnel Model Description

Reference quantities:

- \rightarrow $\Lambda_{c/4} = 30^{\circ}$
- $ightharpoonup S_{ref} = 3172.032 in^2$
- $ightharpoonup c_{ref} = 39.634 in$
- \rightarrow b/2 = 85.054 in
- \rightarrow AR = 4.56

Analyzed two full-span flap configurations

- "Config 1" and "Config 8"
- Only difference is 5° of flap deflection

More information found in multiple references

- AIAA Paper 2000-4217
- "Overview of the First AIAA CFD High Lift Prediction Workshop"

Config 1: 30° slat, 25° flap

Config 8: 30° slat, 20° flap

Overset Grids

Grid Parameters and Images – Brackets Off

	<u> </u>		<u> </u>			1412455555555555555555555555555
Grid	Points	1/N ^{2/3} x 10 ⁵	1 st Cell Size	y ⁺	Const. Cells	Stretching
Coarse	10,653,004	2.07	.00017 in	.87	2	1.25
Medium	24,965,818	1.17	.00013 in	.66	3	1.18
Fine	83,302,438	0.52	.00009 in	.44	4	1.12
Extra-Fine	281,560,012	0.23	.00006 in	.29	6	1.08

Slide 4 of 32

Overset Grids Grid Parameters and Images – Brackets On

Solver, Solution, and Dataset Information Boeing Study vs. NASA Study

Boeing Study

- ➤OVERFLOW v2.1ad
- Majority of data generated using a default mode of operation
 - Roe upwind differencing
 - Spalart-Allmaras turbulence model version "fv3"
 - full Navier-Stokes
 - low-Mach preconditioning
 - exact turbulence model wall distance calculation
- ➤ Small subset of medium grid data generated using SA-RC
- ➤ Identical solution strategy employed for all cases analyzed
 - · steady state
 - freestream initial conditions
 - maximum allowable ∆t

NASA Study

- >OVERFLOW v2.2
- ➤ Submitted data from multiple modes of operation
 - Roe, HLLC, central differencing schemes
 - Spalart-Allmaras turbulence model version "fv3" and Menter's SST
 - full Navier-Stokes
 - · low-Mach preconditioning
 - exact turbulence model wall distance calculation
- ➤ Small subset of medium grid data generated using SA-la
- ➤ Tailored solution strategy based on convergence behavior
 - steady state and time accurate
 - · freestream initial conditions, restarts
 - minimize ∆t

Solver, Solution, and Dataset Information Boeing Study vs. NASA Study (continued)

Dataset No.	Dataset Name	Workshop Entry No.	Source	Turbulence Model	Differencing Scheme	Test Case
1	B-SAfv3-Roe	003.01	Boeing, BR&T	SA-fv3	Roe upwind	1, 2, 3
2	B-SARC-Roe	n/a	Boeing, BR&T	SA-RC	Roe upwind	2
3	N-SAfv3-Roe	014.01	NASA ARC	SA-fv3	Roe upwind	1, 2, 3
4	N-SST-Roe	014.04	NASA ARC	SST	Roe upwind	1, 2, 3
5	N-SAfv3-HLLC	014.02	NASA ARC	SA-fv3	HLLC upwind	1, 2
6	N-SAfv3-central	014.03	NASA ARC	SA-fv3	Central	2
7	N-SAla-Roe	014.05	NASA ARC	SA-la	Roe upwind	2

Test Case 1:	Grid Convergence Study	Required
Test Case 2:	Flap Deflection Prediction Study	Required
Test Case 3:	Slat and Flap Support Effects Study	Optional

Convergence

Lift: Medium Grid

 $\alpha = 34^{\circ}$

 $\Delta C_1 = +/-0.0001$

3.070

3.065

3.060

OVERFLOW Convergence Histories - Lift

- > Config 1 Medium Grid Solutions
- > Slat/Flap Brackets Off

Convergence Lift: Extra-Fine Grid

OVERFLOW Convergence Histories - Lift

- > Config 1 Extra-Fine Grid Solutions
- > Slat/Flap Brackets Off
- > Fully Turbulent, Free Air

CONVERGED

NOT CONVERGED

Trap Wing OVERFLOW Analysis Results

Test Case 1 *Grid Convergence Study*

Test Case 1 – Grid Convergence Study Config 1 Lift at $\alpha = 13^{\circ}$

Effect of Solution Strategy and Platform

- Boeing and NASA results are nearly identical
- Effect of Solution Algorithm
- HLLC results very similar to Roe, particularly for fine and extra-fine grids
- Central differencing gives less left for medium grid

Effect of Turbulence Model

- ➤ Less lift from SA-la compared to SA-fv3
- More lift from SA-RC compared to SA-fv3
- Considerably less lift from SST compared to SA
- SST lift varies more with grid refinement

Test Case 1 – Grid Convergence Study Config 1 Lift Curve

NASA Results with SA-fv3 and Roe upwind

- Grid refinement has little impact on lift curve through 28°
- \triangleright Coarse, medium, and fine grid solutions predict the same α_{stall}

Test Case 1 – Grid Convergence Study Config 1 Pressure Comparison at $\alpha = 13^{\circ}$

 $\eta = .17$

Inboard Comparison, $\eta = 0.17$

- very good agreement with test data
- > no significant grid effect
- ➤ SA-RC matches flap suction peak

Tip Comparison, $\eta = 0.98$

➤ missed wing upper surface aft of ~.25c and flap upper

surface pressures

n = .98

Trap Wing OVERFLOW Analysis Results

Test Case 2 Flap Deflection Prediction Study

Test Case 2 – Flap Deflection Prediction Study Lift Comparison: Config 1 vs. Config 8

Test Case 2 – Flap Deflection Prediction Study Drag Comparison: Config 1 vs. Config 8

Test Case 2 – Flap Deflection Prediction Study Drag Comparison: Config 1 vs. Config 8 (C_D vs α)

Slide 17 of 32

Test Case 2 – Flap Deflection Prediction Study Pitching Moment Comparison: Config 1 vs. Config 8

Trap Wing OVERFLOW Analysis Results

Test Case 3 Slat and Flap Support Effects Study

Slide 19 of 32

Test Case 3 – Support Effects Study Lift Comparison

Boeing Results with SA-fv3 and Roe upwind

- ➤ Brackets reduce C_L by ~.02 at 13° and 21°
- ➤ C_L reduction grows to ~.08 at 28°
- ➤ By 32°, the bracket-on configuration is stalled
 - Early stall behavior may be eliminated with alternate solution strategies such as restarting from a lower alpha solution

Test Case 3 – Support Effects Study Skin Friction and Surface Streamline Comparison

Test Case 3 – Support Effects Study Pressure Comparison at $\alpha = 28^{\circ}$, $\eta = 50\%$

Trap Wing Config1 Pressure Comparison

LaRC 14x22 vs OVERFLOW

 $RN_{MAC} = 4.3$ million, Mach = 0.2, $\alpha = 28^{\circ}$

Trap Wing OVERFLOW Analysis Results

Additional Study Off-Body Grid Refinement

Slide 23 of 32

Additional Study – Off-Body Grid Refinement

Medium Workshop Grid

- > surface abutting = 17.6M points
- \rightarrow off-body = 7.4M points
- total = 25.0M

Cut-Down C-Mesh w/ Off-Body Cartesian Grids

- surface abutting = 8.4M points
- \triangleright off-body = 27.6M points
- > total = 36.0M

Cut-Down C-Mesh w/ Level 1 Adapted Off-Body Cartesian Grids

- > surface abutting = 8.4M points
- > off-body = 161.6M points
- > total = 170.0M

Additional Study – Off-Body Grid Refinement Pressure Comparison at the Tip, $\eta = 0.98$

Preliminary Grid Adaption Results

- Improved pressure comparison at tip with Level 1 refinement
- Adaption clearly puts the points where they need to be
 - Level 1 adaption is a better match to test data compared with the Extra-Fine grid results

OVERFLOW Trap Wing Config 1 Results

- fully turbulent, brackets off
- \triangleright RN = 4.3 million
- \rightarrow Mach = 0.2
- $\geq \alpha = 13^{\circ}$

Trap Wing OVERFLOW Analysis Conclusions

Solution Convergence

- ➤ The solution strategy used in the Boeing Study was based on consistency (i.e., all cases run with the same ∆t, I.C., and assumed steady state). This strategy does not guarantee the same level of convergence when grid spacing is greatly reduced and/or the flow field is characterized by unsteadiness.
- ➤ The solution strategy used in the NASA Study proved more effective at reaching consistent convergence levels. This strategy varied ∆t and I.C. when needed and switched to time accurate calculations when all else failed.

Test Case 1 – Grid Convergence Study

- ➤ With the SA turbulence model, the coarse/medium/fine/extra-fine grid C_L results are close to linear when plotted against 1/N^{-2/3} and agree reasonably well with test data.
- > Flap separation is over-predicted with the SST model particularly for the finer grids.
- ➤ In general, pressures are in good agreement with test data.
 - wing and flap pressures at the tip are the exception
 - flap suction peak and trailing-edge pressures predicted best using the SA-RC model

<u>Test Case 2 – Flap Deflection Prediction Study</u>

- ➤ Config 1 lift, drag, and pitching moment agree well with test data through stall.
- \blacktriangleright More discrepancy seen in the Config 8 force and moment data comparison at high α . This causes the incremental comparison to be off.

Trap Wing OVERFLOW Analysis Conclusions (continued)

<u>Test Case 3 – Slat and Flap Support Effects Study</u>

- > OVERFLOW results are in-line with expectations: brackets reduce lift.
- > Should the bracket-off lift levels be higher than test data? It depends.
- ➤ Addition of brackets should reduce lift and addition of transition should increase lift. Current bracket-off, fully turbulent solutions just happen to agree.
 - no brackets,
 C_L
 These effects are opposite in sign.
 fully turbulent,
 C_L
 More work is needed to see if they are equal in magnitude.

<u>Additional Study – Off-Body Grid Refinement</u>

➤ Preliminary results from an off-body grid refinement study indicate the flow field at the tip can be adequately resolved with proper grid placement and density.

Questions?

Turbulence Model Effect: Flap $\eta = 0.85$ SA-la vs SA-fv3 vs SST

-3

 $\eta = .85$

OVERFLOW Trap Wing Config 1 Results

- ➤ fully turbulent, brackets off
- \triangleright RN = 4.3 million
- \rightarrow Mach = 0.2
- $\geq \alpha = 13^{\circ}$

Turbulence Model Effect: Flap Span SA-RC vs SA-fv3

flap aft span

-2

-4

OVERFLOW Trap Wing Config 1 Results

- ➤ fully turbulent, brackets off
- \triangleright RN = 4.3 million
- \triangleright Mach = 0.2

Turbulence Model Effect SA-fv3 vs SA-la

Considerably less flap TE separation predicted with the SA-RC model.

Additional Study – Off-Body Grid Refinement Config 1 Tip Flow Resolution

OVERFLOW Trap Wing Results

- ➤ fully turbulent, brackets off
- \triangleright RN = 4.3 million
- \rightarrow Mach = 0.2
- $\geq \alpha = 13^{\circ}$

